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Shock-Free Wave Propagation in Gauge Theories
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We present the shock-free wave propagation requirements for massless fields.
First, we briefly argue how the “completely exceptional” approach, originally
developed to study the characteristics of hyperbolic systems in 1 1 1 dimensions,
can be generalized to higher dimensions and used to describe propagation without
emerging shocks, with characteristic flow remaining parallel along the waves.
We then study the resulting requirements for scalar, vector, vector-scalar, and
gravity models and characterize physically acceptable actions in each case.

1. INTRODUCTION

In this work, a brief version of which appeared in ref. 1, we study the
propagation of excitations of classical massless field actions. In general,
criteria for physical propagation of such waves can be derived in many ways.
Here, we will only consider the “completely exceptional” (CE) approach [2],
originally developed for systems in D 5 1 1 1. Roughly speaking, complete
exceptionality is the property ensuring that the initial “wavefronts” evolve
so as to prevent the emergence of shocks, which, in general, result when the
“characteristics” propagate at different speeds. As we are not aware of a
rigorous procedure extending ideas developed at D 5 2 to higher D, we will
follow steps similar to those in D 5 2, and then outline how to generalize
them to higher dimensions. In the process, we show how the CE idea can
be looked at in seemingly different ways and outline a derivation that fills
the gap between the two viewpoints. We apply our criteria to massless spin-
0, 1, 2 nonlinear systems.
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We start in Section 2 by introducing the type of physical problems that
we will study and develop the formalism that will be used throughout. Section
3 gives the analysis of characteristic surfaces, which are crucial to the CE
idea. In Section 4, we give a simple example in D 5 2, and demonstrate
how shocks may be prevented for this particular problem. Motivated by this
example, we next show how the introduced ideas can be extended to higher
dimensions in Section 5. This naturally leads to the CE concept and we show
how one can view it in two seemingly different ways, which are explained
in the text. In Section 6, we study in detail the scalar field in D 5 4 using
these two separate methods, derive the CE condition on it, and argue as to
how one can generalize the result to arbitrary D. Next, we turn to models of
nonlinear electrodynamics in Section 7. Here we encounter particular models,
the constraints on which not only automatically guarantee the CE property
(as originally discussed in ref. 3), but also ensure that both polarizations of
light propagate according to the same dispersion law, i.e., “no birefringence”
[4, 5]. Hence we call these constraints the “strong CE” conditions. We also
derive (for the first time, to our knowledge) the regular CE requirement
conditions (much weaker than strong CE) in the most general D 5 4 case.
Finally, in Section 8, we find that wide classes of gravity models share with
the Einstein case the null nature of their characteristic surfaces. In three
appendices, we show the details of some calculations skipped in the text.

2. THE FORMALISM

In this paper we will be dealing with systems of PDEs that are Euler–
Lagrange equations of relativistic actions. They will be linear in highest
derivatives (quasilinear) and their coefficients will not depend on the coordi-
nates explicitly. So they can be reduced to a set of differential equations of
first derivative order. Hence for U an N-vector of fields, ! an N 3 N matrix,
and @ an N-vector (both arbitrary smooth functions of U ), the equations of
interest can always be written in the form

!m(U )(mU ) 1 @(U ) 5 0 (2.1)

The theory of such equations in arbitrary dimensions is quite difficult,
but we will be mainly interested in the evolution of the spatial boundary of
a wave propagating into some given vacuum. So, with U some smooth (say
at least C1) solution, at some initial time we have some spatial region outside
of which the “state” is the “vacuum solution” U, and across the boundary
surface the full solution U is continuous, but its first derivative may not be.
We want to consider the evolution of such initial “wavefronts.”

We will follow the formalism developed for this situation in refs. 2 and
3 and the references therein. Let the hypersurface S specified by
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w(xm) 5 0 (2.2)

denote the surface of evolution of the initial wavefront; i.e., the initial wave-
front is the spatial surface w(0,

›
x ) 5 0. Assume that the field U is continuous

across S; so only the normal derivative can be discontinuous. Choosing a
local coordinate system denoted by xm 5 (w, ci), the “first-order discontinuity”
in a given quantity f can be defined as

d1f [ F f
wG (2.3)

where

[X ] [ X.w501 2 X.w502 [ d0X (2.4)

Then it is easy to check that

d0(mU ) 5 [mU ] 5 (mw) d1U (2.5)

Here we are considering the possibility that d1U is discontinuous. Taking
“first-order discontinuity” is then like differentiation,

d1 f (U ) 5 (¹Uf )d1U (2.6)

The generalization to quasilinear systems of higher order, say q, in derivatives
is straightforward now. Define

dr f [ F rf
wrG (2.7)

and consider the case that

dqU Þ 0, drU 5 0, 0 # r , q (2.8)

Notice that “taking the discontinuity” depends on the order of derivative.
For example, if f has a second-order discontinuity, i.e., d2 f Þ 0, then d1 f 5
0, but d1(m f ) Þ 0. Hence in general one has

dr m 5 (mw)dr11 (2.9)

3. ANALYSIS OF THE CHARACTERISTICS

Taking the discontinuity of (2.1), we find that, on S,

(!mwm) d1U 5 0 (3.1)

where !m 5 !m(U). [Here wm [ mw; henceforth, we will drop the subscript
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1 on d and use dU to mean the first-order discontinuity in U, i.e., d1U.] Since
dU Þ 0, we see that S must be a characteristic surface, i.e.,

det(!mwm) 5 0 (3.2)

must hold on S. Thus dU is in the kernel of !mwm for a given choice of root
in (3.2).

We can assume that (2.1) can always be rewritten such that !0 is the
identity matrix and also that we have a flat metric on spacetime. We next
define the unit normal to S,

n̂ 5

›
¹w

.
›

¹w.
(3.3)

and the “characteristic eigenvalue”

l 5 2
0w

.
›

¹w.
(3.4)

So for a given choice of root, dU is always a linear combination of the
right eigenvectors of !n [ n̂ ?

›
! for the corresponding eigenvalue l. In the

hyperbolic case, the set of eigenvalues l(I) (I 5 1, . . . , N ) are distinct, and
the corresponding right (left) eigenvectors RI (LI) are real and form a linearly
independent set.

For general !m (!0 not necessarily equal to the identity matrix), l are
just the roots of the characteristic equation (3.2) and we have

2LI!0l(I) 1 LI!n 5 0 5 !nRJ 2 l(J)!0RJ (3.5)

2 LI!0l(I) RJ 1 LI!nRJ 5 0 5 LI!nRJ 2 LIl(J)!0RJ (3.6)

Then for the hyperbolic case, LI!0RJ 5 0 (I Þ J ), and one can always choose
to normalize such that

LI!0RJ 5 dIJ (3.7)

The characteristic equation (3.2) is homogeneous of order N in pm [
wm. By analogy, we can write it as

H(x, p) 5 0 (3.8)

where we may introduce the explicit coefficients

H(x, p) 5 Gm1...mN pm1 ??? pmN (3.9)
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Then, by homogeneity of H,

o
m

pm
H
pm

5 NH 5 0 (3.10)

which can be written as
›

p ?
›

¹ pH 5 0 (3.11)

where
›

p is the D-dimensional vector with components ( p0, . . . , p(D21)) and›
¹ pH is the vector with components (H/p0, . . . , H/p(D21)).

Since
›

p is the normal to the hypersurface S, we see that the tangential
vector is parallel to

›
¹ pH, or that the curves

dxm

ds
5

H
pm

(3.12)

are tangential on (3.8). Notice that this is a set of curves, one for each
root of the characteristic equation. In analogy to classical mechanics, the
“momenta” then satisfy

dpm

ds
5 2

H
xm (3.13)

on S. This follows from dH/ds 5 0 for a tangential deformation and from
the compatibility condition m pn 2 n pm 5 0. We can eliminate s for t 5
x0, and then H factors as

H 5 p
N

I51
( p0 2 hI) (3.14)

and p0 can be fixed as one of the roots. Reparametrizing, for a given root p0

5 hI0 (U, pi), we can span the characteristic surface with the trajectories
obeying

dxm

ds
5

hI0

pm
,

dpm

ds
5 2

hI0

xm (3.15)

4. AN EXAMPLE

Consider the following D 5 2 example [2]. Take the simple PDE

tu 1 u xu 5 0 (4.1)

Then it easily follows that the characteristic curve is
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dx
dt

5 u(x, t) (4.2)

Clearly (4.1) and (4.2) imply du/dt 5 0 along the characteristic curve, i.e.,
the characteristic curve is a line with constant u. So the “velocity” dx/dt is
constant and the characteristics are nothing but straight lines. If we denote by
w the point where the given line is at initial time t 5 0, then by integrating (4.2),

x(t) 5 u(w, 0)t 1 w (4.3)

This implicit equation for w 5 w(x, t) is just the equation for the given
characteristic curve, parametrized by its initial point. So then one has

u(x, t) 5 u(w(x, t), 0) (4.4)

for the solution to (4.1), in terms of the initial value of u at t 5 0.
For a linear PDE, the coefficient of xu in (4.1) is a constant independent

of u and the characteristic curves are parallel straight lines. In the general
case, when the coefficient of xu in (4.1) is an arbitrary, say smooth, function
of u, the slope of a given characteristic curve depends on the initial value
of u at the starting point. Thus, as time evolves, the characteristic curves can
intersect and a shock may develop. It seems that this can be prevented only
if the “velocity” dx/dt can be made independent of the coordinate normal to
the characteristic.

5. EXCEPTIONALITY

Even though we have neither found a proof in the literature nor been
able to prove it rigorously, this “method of characteristics” seems to extend
to first-order PDEs in higher dimensions. Although there does not seem to
be such a construction for the matrix system (2.1), we want to carry on our
discussion and see what can be done.

Motivated by this 2-dimensional example, let us look for situations
where the characteristic surfaces do not cross as they evolve, hence shock
waves do not develop. Following the reasoning given above, we can demand
that (locally) the characteristic eigenvalue, which after all is analogous to
the “velocity” in the given example, is independent of w in the evolution,
or that

l
w

5 0 5 (¹Ul)
U
w

(5.1)

Now let us look at the homogeneous case in (2.1) (i.e., @ 5 0). Then
taking a particular root p0 5 h(I0) of the characteristic equation (3.14) defines
a family of surfaces (remember pm [ mw(I0))
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w(I0) (0,
›

x ) 5 const (5.2)

Assume that U is just a function of w. Then (2.1) implies (by @ 5 0) that

(!mwm)
dU
dw

5 0 (5.3)

and hence

dU
dw

5 x(J)(w)R(J) (5.4)

where R(J) is the corresponding right eigenvector for the given root. Since U
and R(J) are N-vectors, we end up with N ordinary differential equations. We
can always assume that R(J) has a nonzero component, and that a particular
component UK can always be chosen such that it is equal to w. Since the
eigenvector R(J) is known as a function of U and w, the ratios of the other
components determine UA 5 UA(UK) (A Þ K ). The particular component UK

itself can be determined from the characteristic equation. Now a solution for
U obtained in this way is called a simple wave [2].

This brings us to the so-called exceptionality condition [2]. Let us first
define what is meant by that:

The wave corresponding to a given characteristic root is called excep-
tional if it is such that

(¹Ul) ? R 5 0 (5.5)

Moreover, when all the N wave modes are exceptional, the system is
said to be CE [2].

So for simple wave solutions of the homogeneous case just discussed,
the exceptionality condition is just the statement that ¹Ul is orthogonal to
the corresponding right eigenvector. In light of (5.1) and the discussion that
led to it, the exceptionality condition does after all seem to “justify” a
generalization of the (naive) idea we developed to prevent the development
of shocks using the D 5 2 example (at least for the case of simple waves).

Another way of looking at the problem may be provided by the following:
From (3.1), it follows that dU can be expressed as a linear combination

of right eigenvectors as

dU 5 pIRI (5.6)

for some components pI (I 5 1, . . . , N ) (also called the coefficients of
discontinuity). In general, one would expect these coefficients to evolve
according to a nonlinear differential equation. In Appendix A, it is shown
how the CE condition can also be viewed as the statement that the coefficients



166 McCarthy and Sariog̃lu

of discontinuity evolve according to a linear ODE, and thus the characteristic
curves are prevented from intersecting locally.

We now briefly mention another alternative approach developed in ref.
3 for a “covariant formulation” of exceptionality. Let us choose a particular
root p0 5 h(J)(U, pi) for some J in (3.14). We also have by (3.4) that p0 is
proportional to l. If we now take the field gradient ¹U of the “Hamiltonian”
H in (3.14) and set p0 5 h(J) afterward, we see that only the term which is
proportional to ¹Up0 , ¹Ul does not vanish in the resultant expression. For
a simple wave, then, contracting this with dU and using (2.6), we get

¹Ul ? dU 5 dl (5.7)

for this particular root.
Hence, in light of (5.1) and (5.5), one arrives at the “equivalent” condition

for exceptionality:
The wave corresponding to a given root is exceptional if on the character-

istic surface H 5 0, one has

dl 5 0 (5.8)

Again for CE, this must hold for all roots, or that

dH 5 0 (5.9)

In the following, we apply the above-mentioned (two seemingly differ-
ent) CE requirements in a variety of physical cases. In the process we supply
the missing details leading to the results reported in ref. 1. We want to make
it clear that (5.5) was originally developed for systems in D 5 2 only [2].
Here, however, we apply (5.5) and (5.9) to systems in higher dimensions.
Although we are not aware of a rigorous construction that generalizes the
results explained so far to PDEs in higher D, it is plausible that such a general
proof can be given.

After all, notice that the characteristic equation and the condition for
CE are algebraic equations which must hold pointwise in any xm. At a fixed
point on the characteristic surface at a fixed time, the normal n̂ is a fixed
vector and proceeding for arbitrary n̂, and U, is the same as imposing the
conditions pointwise. Furthermore, the original system is rotationally invari-
ant, where rotations act on U as some linear matrix representation. So, the
CE conditions are rotation invariant, and having chosen n̂ (i.e., working at
a fixed point and time), we can just rotate it to, say, the first coordinate
direction x1 and proceed to study the eigensystem .!1 2 lI. 5 0, provided
the system can be brought into a form such that !0 equals the identity matrix.
Of course U changes in rotating, but the eigensystem is worked out for
arbitrary U.
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6. SCALAR FIELD

We now want to study in detail the CE requirement for a scalar field
in D 5 4. We first work out the problem using the requirement (5.5), then
show that one finds the same answer (with considerably less effort) using
condition (5.9), as was in fact done earlier in ref. 3.

6.1. The First Way

Given the covariant action I 5 * d 4x L(z), where z [ 1–2 (ms)2 is the
only invariant (in first derivatives), h 5 (2, 1, 1, 1), the field equations
can be written as

m((ms)L8) 5 (mns)(ns)(ms)L9 1 (mms)L8 5 0 (6.1)

Here prime denotes differentiation with respect to z.
By defining A [ 0s, B [ 1s, C [ 2s, and D [ 3s [hence z 5 1–2

(2A2 1 B2 1 C2 1 D2)], we can take U 5 (A, B, C, D) and write this
system in canonical form as

I
U
t

1 M i U
xi 5 0

where each M i has elements (with i 5 1, 2, 3; m 5 0, 1, 2, 3)

m1
00 5

22ABL9

Q
, m1

01 5
B2 L9 1 L8

Q
, m1

02 5
BCL9

Q
, m1

03 5
BDL9

Q

m1
2m 5 m1

3m 5 0; m1
1m 5 2d0m

m2
00 5

22ACL9

Q
, m2

01 5 m1
02, m2

02 5
C 2L9 1 L8

Q
, m2

03 5
CDL9

Q

m2
1m 5 m2

3m 5 0; m2
2m 5 2d0m

m3
00 5

22ADL9

Q
, m3

01 5 m1
03, m3

02 5 m2
03, m3

03 5
D2L9 1 L8

Q

m3
1m 5 m3

2m 5 0; m3
3m 5 2d0m

and Q [ A2L9 2 L8. Here we have also used the compatibility conditions

B
t

5
A
x1 ,

C
t

5
A
x2 ,

D
t

5
A
x3

So, by the reasoning given at the end of the last section, we proceed to
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impose the CE condition (5.5) using the eigensystem .M 1 2 lI. 5 0.4 The
characteristic polynomial of M 1 turns out to be l2(l2 1 a1l 1 a2) 5 0,
where a1 [ 2ABL9/Q and a2 [ (B2L9 1 L8)/Q. Apart from the eigenvalue
at l 5 0 (with multiplicity 2), there are two distinct eigenvalues l3, l4 in
the general case.5 The eigenvectors corresponding to each can be taken as

e1 5 10,
2BCL9

B2L9 1 L8
, 1, 02

T

, e3 5 (2l3, 1, 0, 0)T

e2 5 10,
2BDL9

B2L9 1 L8
, 0, 12

T

, e4 5 (2l4, 1, 0, 0)T

which clearly form a full linearly independent set, hence our system is
hyperbolic. We next apply the CE condition (5.5) to this eigensystem. Obvi-
ously, it will be trivially satisfied for l 5 0. For the remaining nontrivial
eigenvalues, note that by differentiating l2 1 a1l 1 a2, 5 0, we can write

l
Us

5 2
la1/Us 1 a2/Us

2l 1 a1

and the CE condition (s (lp /Us) ep,s 5 0 becomes

l2 a1

A
1 l1a2

A
2

a1

B2 2
a2

B
5 0 for l 5 l3, l4

by using the explicit form of the eigenvectors. However, we know that l3,
l4 satisfy l2 1 a1l 1 a2 5 0. Hence these two equations must be linearly
dependent, which implies that

a1
a1

A
1

a1

B
2

a2

A
5 0 and a2

a1

A
1

a2

B
5 0

have to be satisfied simultaneously.
Substituting the explicit forms of a1 and a2, we find after some calcula-

tion that

a1
a1

A
1

a1

B
2

a2

A
5

L8L- 2 3(L9)2

Q3 [A(3B2 1 A2)L8 1 A3(B2 2 A2)L9]

5 0 (6.2)

4 In fact, we showed separately that taking arbitrary n̂ does not alter the final results obtained
in this section.

5 For the degenerate case L8 [L8 2 (A2 2 B2)L9] 5 0, l3 5 l4 5 2A/B, but then there is no
nontrivial covariant action which can satisfy this. Moreover in this case, the system is no
longer hyperbolic.
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a2
a1

A
1

a2

B
5 L8L- 2

3(L9)2

Q3 [B(3A2 1 B2)L8 1 BA2(B2 2 A2)L9]

5 0 (6.3)

The only nontrivial covariant condition we can impose such that these
two constraints are satisfied simultaneously is

L8L- 2 3(L9)2 5 0 (6.4)

6.2. The Second Way

In this part, we want to impose (5.9) using the formalism developed
starting in Section 2. We now look for a surface S across which the discontinu-
ity in s is second order. Thus with d2s [ Q, we have (sm [ ms, wm [ mw)

dsm 5 wmQ

Taking the discontinuity of (6.1) gives

wm((dL8)sm 1 (dsm)L8) 5 0 (6.5)

which, with dz 5 sm(dsm) 5 smwmQ and dL8 5 L9 dz, becomes

Q(& L8 1 (snwn)2L9) 5 0 (6.6)

where & [ wmwm. Comparing this to the previous discussion, we have H(x, p)
5 Gmnpm pn 5 0 with ( pm 5 wm, Q Þ 0)

Gmn 5 hmnL8 1 smsnL9 (6.7)

Imposing (5.9) (taking the discontinuity) gives

Q(3& L9 1 (slwl)2L-)(smwm) 5 0 (6.8)

and using &L8 1 (snwn)2L9 5 0 in (6.8) yields

Q& 12
L8L-

L9
1 3L92 (snwn) 5 0 (6.9)

This again leaves us with the condition (6.4).
Notice that throughout, we have never used the fact that D 5 4. This

suggests that (6.4) is a D-invariant (D $ 2) condition. For general D, using
the requirement (5.5), one ends up with M i, which individually have l 5 0
(with multiplicities D 2 2) and the remaining two nontrivial eigenvalues
[corresponding to the pair of canonical variables (s, p) for the only degree
of freedom of the theory] with their corresponding eigenvectors yield (6.4)
when inserted into (5.5).
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To find the solutions of (6.4), we first note that by defining X [ L8, we
can write it as X 4 (X 8/X 3)8 5 0, which will be satisfied nontrivially provided
X 8 5 0 or (X 8/X 3)8 5 0. Integrating these simple equations, we find X 5
c1, L 5 c1z 1 c2 or (1/X 2)8 5 22c3, 1/X2 5 22c3z 1 c4, L 5
6(1/c3) !22c3z 1 c4 1 c5 for cq (q 5 1, . . . , 5) arbitrary integration con-
stants. Choosing these constants suitably, we note the particularly interesting
cases as

L 5 2z 5 2 1–2 (ms)2

and

L 5 1 2 !11 2z 5 1 2 !1 1 (ms)2 5 1 2 !2det[hmn 1 (ms)(ns)]

which are the scalar analogs to Maxwell and Born–Infeld electrodynamics,
respectively.

7. NONLINEAR ELECTRODYNAMICS IN D 5 4

We now come to our most physically important example, the D 5 4
Abelian gauge vector theories. Any gauge-invariant action, depending on
Fmn 5 m An 2 n Am but not its derivatives, has the form

I[Am] 5 # d 4x L(a,b), a [
1
2

FmnFmn,

(7.1)

b [
1
4

Fmn*Fmn, *Fmn [
1
2

emnstFst

Here subscripts on L mean differentiation with respect to the (only possible)
invariants a or b and with our conventions e0123 5 11, hmn 5 (2, 1, 1,
1), a 5 B2 2 E 2, b 5 2B ? E with E i [ F 0i, and Bi [ 1–2 eijkFjk.

We first drop the b dependence of L, show in detail how the CE condition
(5.9) is applied to L(a), then reinclude b and carry out the CE condition
(5.9) for full L(a, b). [Again we originally studied this problem using the
requirement (5.5), which is quite laborious and tedious. We show in Appendix
B the general outline of how (5.5) is carried out for L(a). We do not show
how (5.5) is applied to the most general case, L(a, b), although in this case
we were able to prove at least the sufficiency of (7.14) and (7.15) using (5.5).]

We look for a hypersurface S across which the discontinuity in Am is
second order. Hence, with d2Am 5 pm we have

dFmn 5 wmpn 2 wnpm, d *F mn 5 emnstwspt (7.2)

and
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da 5 2Fmnwmpn, db 5 *Fmnwmpn (7.3)

7.1. L(a) Case

For L 5 L(a) only, the field equation is simply n(FmnL8) 5 0 with the
Bianchi identity n *Fmn 5 0. (Here, prime denotes differentiation with respect
to a.)

Taking the discontinuity of the field equation, we find

22Um^L9 1 (wnpn)wmL8 2 &pmL8 5 0 (7.4)

where we have used U m [ F lmwl, & [ wmwm, and ^ [ F lswlps 5 Usps.
(Taking the discontinuity of the Bianchi identity, one can see that it fol-
lows automatically.)

Now contracting (7.4) by 2Um (and assuming ^ Þ 0 for the general
case), we find

H 5 2uL9 1 &L8 5 0 (7.5)

where we have defined u [ UmUm. Now du 5 2UmdUm 5 2&^ and da 5
2^. Hence imposing (5.9) gives

d H 5 ^(4 uL- 1 6&L9) 5 0 (7.6)

and substituting for u using (7.5), we end up with

dH 5 2^&13L9 2
L8

L9
L-2 5 0 (7.7)

Hence we again find (6.4) in a new disguise, whose solutions we can immedi-
ately copy as L(a) 5 k 1 (d 1 ca)1/2 (for arbitrary constants k, d, c) apart
from Maxwell, L 5 2 1–2 a (or L8 5 const).

We remark that in D 5 3, where a is the only invariant, this is also the
CE result, where one also has !1 1 a 5 !2det[hmn 1 Fmn]. In D 5 2 there
is of course no propagation for any L(a) and correspondingly no restrictions
are imposed.

7.2. L(a,b) Case

We now want to study the full Lagrangian L(a, b). For this case, the
field equation is n(LaFmn 1 1–2 Lb *Fmn) 5 0. Taking the discontinuity, we find

Fmnwn(dLa) 1 wn(dFmn)La 1 1–2 *Fmndn(dLb) 5 0 (7.8)

Using (7.2) and (7.3), this becomes
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2Um(2^Laa 1 xLab) 1 wn(wmpn 2 wnpm)La

2 1–2 Vm(2^Lab 1 xLbb) 5 0 (7.9)

where we have used Vm [ *Flmwl and x [ *Flswlps 5 V sps.
Now contracting (7.9) by 2Um and then by 2Vm, we get, respectively,

^(2uLaa 1 &La 1 b&Lab) 1 x(uLab 1 1–2 b&Lbb) 5 0 (7.10)

^(2b&Laa 1 Lab(u 2 a&)) 1 x(b&Lab 1 &La 1 1–2 Lbb(u 2 a&)) 5 0 (7.11)

where we have made use of the identities U mVm 5 b& and V mVm 5 u 2 a&.
For this system to have nontrivial ^ and x, the determinant of the 2 3

2 matrix that comes from writing (7.10) and (7.11) as (^x)M 5 0 must
vanish. Hence we have (K [ LaaLbb 2 L2

ab)

H 5 u2K 1 u&[2La(Laa 1 1–4 Lbb) 2 aK]

1 &2[La(La 1 2bLab 2 1–2 aLbb) 2 b2K] 5 0 (7.12)

Notice that for the discriminant, one gets

D
&2 5

1
4

[2La(4Laa 2 Lbb) 1 2aK ]2 1 4[2LaLab 1 bK ]2 (7.13)

For the case D 5 0, i.e., when

2La(4Laa 2 Lbb) 1 2a[LaaLbb 2 L2
ab] 5 0 (7.14)

2LaLab 1 b[LaaLbb 2 L2
ab] 5 0 (7.15)

H takes the form H 5 K(u 2 h)2 5 0 and for K Þ 0, it follows that (5.9)
is satisfied automatically. Hence any L that fulfills (7.14) and (7.15) is CE.

The differential constraints (7.14) and (7.15) were actually found a long
time ago in different contexts [3–5]. Bialynicki-Birula [5] discovered these
equations by studying the propagation of weak electromagnetic waves on a
strong, constant field background. He showed that they were necessary for
both polarizations of light to propagate according to the same dispersion law;
he calls these the “no-birefringence” conditions. Plebański [4] studied the
theory of small perturbations and their discontinuities in nonlinear electrody-
namics, and, considering all possible cases for the form of the background field
(e.g., null, algebraically general) and constraining the system with physical
conditions such as causality along the way, proved the necessity and suffi-
ciency of these differential constraints for the excitations of light to propagate
according to a single characteristic equation, with coinciding characteristic
surfaces. Boillat [3] found these conditions using equation (5.9) explained
in this paper, and demanding that it be expressible as a complete square as
explained in (7.12)–(7.15).
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The work of Plebański involves an extensive study of characteristic
surfaces, which is what the CE formulation is all about, in nonlinear electrody-
namics, so it is not surprising that he finds (7.14) and (7.15) as the conditions
to have coinciding characteristic surfaces; after all, that is also what Boillat
gets using the CE viewpoint. Bialynicki-Birula effectively allows the disconti-
nuities in terms of weak disturbances about a generic background. It is not
surprising to see that having the same dispersion law for both polarizations
implies having a single characteristic surface for the evolution of discontinu-
ities. Apart from these historical details, we will call the two conditions (7.14)
and (7.15) the “strong CE” conditions from now on because of this extra
physical constraint that they impose on the system.

The solutions of (7.14) and (7.15) are important to define physically
acceptable models of electrodynamics. It is clear that the Maxwell action,
IMax 5 21–2 * d 4x a, is indeed a solution, and it was realized in refs. 3–5 that
another is the (once again popular) Born–Infeld action [6],

IBI 5 # d 4x (1 2 !2det[hmn 1 Fmn]) 5 # d 4x (1 2 !1 1 a 2 b2) (7.16)

However, these are not the only solutions unless one further requires that
they reduce to IMax for weak fields. Otherwise there are additional solutions
such as L 5 a/gb. [As shown in ref. 1, without requiring the weak-field
condition, imposing strong CE with duality invariance (a property shared by
both of these theories) singles out Maxwell and Born–Infeld.]

Now we continue with the general case K Þ 0, D Þ 0. For convenience,
we define

P [ 2La(Laa 1 1–4 Lbb) 2 aK, R [ La(oLa 1 2bLab 2 1–2 aLbb) 2 b2K

p [ 2Laa, q [ La 1 bLab, r [ Lab, s [ 1–2 bLbb

and rewrite H as

H 5 u2K 1 u&P 1 &2R 5 0 (7.17)

Now imposing (5.9), we find

dH 5 u2(2^Ka 1 xKb) 1 u&(4^K 1 2^Pa 1 xPb)

1 &2(2^P 1 2^Ra 1 xRb) 5 0 (7.18)

where we have used du 5 2&^, da 5 2^, and db 5 x.
Now using u2 5 2 (&/K )(uP 1 &R) [from (7.17)] and x 5 2( pu 1

&q/ru 1 &s) [from (7.10)], we find that (7.18) is simplified into a form dH 5
u&z1 1 &2z2 5 0. Since K Þ 0 and D Þ 0, this implies that z1 and z2 must
vanish simultaneously. [This can also be seen as the requirement that (7.17)



174 McCarthy and Sariog̃lu

and (7.18) be linearly independent.] Finally, one finds that the CE require-
ments [corresponding to (5.9)] are

2Ka(rP2 2 sPK 2 rRK ) 1 Kb(qPK 2 pP2 1 pRK ) 1 2Pa(sK 2 2 rPK )

1 KPb( pP 2 qK ) 1 2Ra(rK 2) 2 Rb( pK 2) 2 2rPK 2 1 4sK 3 5 0 (7.19)

2Ka(rPK 2 sRK ) 1 K b(qRK 2 pRP) 2 2Pa(rRK ) 1 Pb( pKR)

1 2Ra(sK 2) 2 Rb(qK 2) 2 4rRK 2 1 2sPK 2 5 0 (7.20)

In Appendix C, we give these equations in terms of L and its derivatives
only. Notice that these equations are quasilinear (linear in the third-order
derivatives of L) just like (6.4). Being of third order, they are of course weaker
than (7.14) and (7.15). Born–Infeld, of course, satisfies these equations, but
we have been able to solve them neither in the general case nor for the more
restricted situation when one also demands duality invariance. For the latter,
one would expect to get two (or, with a bit of luck, only one) ordinary
differential equations involving only a-derivatives when one substitutes for
b-derivatives by using the duality invariance constraint [7] and its (a, b)
derivatives recursively.

An application of CE, rather than strong CE, comes from theories involv-
ing the (neutral) scalar plus the Abelian vector field, where possible invariants
are (a, b, z [[ 1–2 (ms)2], y [ 1–2 (Fmnsn)2). For a Lagrangian L(a, b, z), the
CE conditions further require Lza 5 0 5 Lzb, which reduce it to the noninter-
acting L(a, b) 1 L(z) form. Having the “fully Born–Infeld” form
!2 det[hmn 1 Fmn 1 sm sn] in mind, one can consider L(a, b, y, z). It turns
out, however, that there are no CE actions with nontrivial dependence on the
other possible variable y [ 1–2 (Fmnsn)2. Thus, CE alone separates the two
systems and imposes the previously stated constraints on their forms.

8. GRAVITATIONAL MODELS

Finally, we turn to gravitation. For Einstein’s gravity in vacuum, as well
as the linearized theory, the gravitational waves are CE, the characteristic
surfaces describing discontinuities being null (see, e.g., ref. 8). It can be
shown that this result holds for any D . 4. (For D 5 3, there is of course
no propagation and no restrictions are imposed.) One can further look at pure
gravitational actions of the form * d 4x ( pR2

mn 2 qR2)!2g in D 5 4 and
* dDx f (R)!2g in D . 3 and show that the same conclusion remains
unchanged.

To reduce these theories to a first-order system would be inconvenient,
but is fortunately made unnecessary by a simple extension of the previous
discussion. Clearly, if we rebuilt the original higher order equations from the
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set (2.1), we would simply have the situation that all the derivatives of the
field are assumed continuous except the highest one.

We first sketch the Einstein case to establish notation. Considering a
second-order discontinuity in the metric across some characteristic surface
w 5 0, d2gmn 5 pmn, we have (wm [ mw)

d1Gl
mn 5 1–2 (wmpl

n 1 wnpl
m 2 wlpmn)

d0 Rmn 5 wl(d1 Gl
mn) 2 wn(d1Gl

lm)

5 1–2 (wmwlpl
n 1 wnwlpl

m 2 wmwnpl
l 2 wlwlpmn)

and

d0 R 5 gmn(d0 R mn) 5 wmwnpmn 2 wmwmpn
n

which implies

d0Gmn 5 d0(Rmn 2 1–2 gmnR) 5 d0 Rmn 2 1–2 gmnd0 R 5 0

d0Gmn 5 1–2 [wmwlpl
n 1 wnwlpl

m 2 wmwnpl
l 2 wlwlpmn

2 gmn(wswtpst 2 wswspt
t)] 5 0 (8.1)

In the harmonic gauge gmn Gs
mn 5 0, one finds that its first discontinu-

ity implies

2pmnwm 2 pm
mwn 5 0 (8.2)

Multiplying this by gnswt 1 gntws, one gets

wmwlpl
n 1 wnwlpl

m 2 wmwnpl
l 5 0 (8.3)

whereas contracting by wn, one finds

wmwnpmn 5 1–2 wmwmpm
n (8.4)

Using (8.3) and (8.4) in (8.1), one ends up with

d0Gmn 5 1–2 (wlwlpmn 1 1–2 gmnwlwlps
s) 5 0

Hence taking the trace,

d0Gm
m 5

(D 1 2)
4

wlwlps
s 5 0

The discontinuity in gmn is arbitrary, hence ps
s Þ 0, which implies that

wlwl 5 0. This says that the characteristic surfaces are null: the discontinuities
travel with the speed of light in all directions. The same holds for the linearized
version of the theory as well, of course.
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For generic quadratic Lagrangians ( pRmn Rmn 2 qR2)!2g in D 5 4,
using similar steps [writing the field equations, choosing harmonic gauge as
before, and utilizing the identities (8.3), (8.4)], one finds that (Q [ wlwl,
p [ pl

l)

Q11
2

( p 2 2q)wmwnp 2
p
2

Qpmn 2
1
2

gmn1p
2

2 2q2Qp2 5 0 (8.5)

Taking the trace, one gets Q2p( p 2 3q) 5 0. (The choice p 5 3q corresponds
to Weyl-tensor squared; the scalar degree of freedom is absent.) For p 5 3q,
(8.5) becomes

qQ(1–2 wmwnp 2 3–2 Qpmn 1 1–4 gmnQp) 5 0

Since pmn is arbitrary, we see that again Q 5 0, as in the Einstein case, so
Q 5 0 characterizes both Einstein and the quadratic action.

Finally, we consider the class of actions * d Dx f (R)!2g in D $ 4,
whose field equations are

Emn [ Rmn f 8 2 1–2 gmn f 1 (gmn¹s¹s 2 ¹m¹n) f 8 5 0

Hence the order of highest derivatives is four. Following similar steps by
taking d4gmn 5 pmn, we find the same expressions for d3Gl

mn and d2Rmn as
for d1Gl

mn and d0 Rmn in the Einstein case. Using these, we get

d0 Emn 5 (Qgmn 2 wmwn)(wswtpst 2 Qp) f 9 5 0

Going to harmonic gauge with identity (8.4) and taking the trace, one gets

d0 Em
m 5

1 2 D
2

Q2p f 9 5 0

Here, too, Q 5 0 is the only solution, and so for a wide class of gravitational
actions the propagation obeys the Einstein behavior as well. As is well known,
these systems are variants of Brans–Dicke scalar-tensor theories, so their
“good propagation” is not surprising.
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APPENDIX A

In this appendix, we show how the CE requirement (5.5) causes the
coefficients of discontinuity to evolve according to a linear ODE.

Consider the wavefront at the boundary of a region with smooth enough
solution U. The following derivation fills a gap in ref. 3 and generalizes ref.
9, where the evolution of discontinuities in first derivatives of the dependent
variables is studied. Choose a root of the characteristic equation, p0 5
hI0(U, pi). Differentiating (2.1) with respect to w, and contracting with the
corresponding left eigenvector, we have (A, B, C 5 1, . . . , N )

(wUC)LI
A(¹UC!m

AB)(mUB) 1 LI
A!m

AB(w mUB)

1 (wUC)LI
A(¹UC@A) 5 0 (A.1)

Now we can take the discontinuity of this equation. We have higher derivative
terms, but notice for the term in the middle that (wm 5 mw)

w mUB 5 wm(2
wUB) 1 (w wm)(wUB) 1 (mci)(ciwUB)

1 (w mci)(ciUB) (A.2)

The first term on the right-hand side of (A.2) vanishes when contracted with
!m against the left eigenvector. Thus, there is just one w derivative (i.e., no
2

w pieces), and the discontinuity can be taken as before. We first compute
the following to use for the first term in (A.1):

[(wUC)(mUB)] 5 (dUC) wm(dUB) 1 (dUC)(mUB)

1 (wUC) wm(dUB) (A.3)

Now using (5.6) and (A.3) and taking the discontinuity of (A.1), we find

LI
A!m

AB(mci)(ci dUB) 1 mI
Jp J

1 wm(dUC)LI
A(¹UC!m

AB)(dUB) 5 0 (A.4)

[Here the first term comes from the third term in (A.2), the last term comes
from the first term in (A.3), and we have collected as “m” the coefficients
of terms linear in p without derivatives. “mI

J” are determined by the back-
ground solution as well as the extrinsic geometry of the characteristic surface.]
Let us examine the other terms in (A.4).

The first term in (A.4) is (up to a redefinition of the coefficient matrix m)

(LI
A!m

ABRJ
B)(mci)(cipJ) 5 (LI

A!m
ABRJ

B)(mpJ) (A.5)

By taking the pi derivative (i.e., applying pi) of the straightforward equation
LI

A!m
ABRJ

Bpm 5 0 and using (3.7), one finds
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LI
A!i

ABRJ
B 5 2dIJ hI0

pi
(A.6)

Hence using the equations for the trajectories (3.15), the first term in (A.4)
reduces to dp/ds, where

d
ds

5


t
2

dxi

ds


xi

For the last term in (A.4), we have (by making use of LI
A!m

ABRJ
B pm 5

0)

wm(dUC)LI
A(¹UC!m

AB)(dUB) 5 2(dUC)LI
A!m

AB(dUB)(¹UCwm)

Notice that the last factor has U dependence via the characteristic root p0.
Hence using (3.4) and (3.7) [with (5.6)],

wm(dUC)LI
A(¹UC!m

AB)(dUB) 5 (dUC)dIJpJ.
›

¹w.(¹UCl)

5 .
›

¹w.pIpJRJ
C(¹UCl) (A.7)

Finally, then, we have a nonlinear equation for the evolution of the
coefficients of discontinuity along rays,

dp I

ds
1 m I

Jp J 1 .
›

¹w.p Ip JR J
C(¹UCl) 5 0 (A.8)

This is computable because all “U’s” above are actually “U’s.”
Thus, we recognize that CE condition can also be viewed as the statement

that the coefficients of discontinuity evolve according to a linear ODE.

APPENDIX B

In this appendix, we show the general outline of how (5.5) is carried
out for models of electrodynamics that depend only on the Maxwell invariant,
i.e., L 5 L(a).

By taking U 5 (E, B) and looking only at the spatial components of
the field equation n(FmnL8) 5 0 and the Bianchi identity n*Fmn 5 0 (i.e.,
setting m 5 i), we can write this system in the form Hm U/xm 5 0, where
Hm are 6 3 6 matrices. For this new system [as in the scalar field case when
we had 2(5 4 2 2 ? 1) nontrivial eigenvalues corresponding to the pair of
canonical variables for the only degree of freedom of the theory] we expect
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to get l 5 0 eigenvalue with multiplicity 2 (5 6 2 2 ? 2) for each individual
Hi because of the two degrees of freedom.

Just as was done in the scalar field case, we only take H1 to start with.
Hence we have H0 U/t 1 H1 U/x1 5 0, where

H0 5 1P Q
0 I 2 and H1 5 1S R

s 02
which have elements (with i, j 5 1, 2, 3)

pij 5 2Ei Ej L9 2 dij L8

qij 5 22Ei Bj L9

sij 5 2e1ik Ej Bk L9

rij 5 2e1ik(2Bj Bk L9 1 djk L8)

sij 5 2e1ik

and I is the 3 3 3 identity matrix.
Multiplying by

(H0)21 5 1P21 2P21Q
0 I 2

we bring this system into the canonical form I U/t 1 W U/x1 5 0, where

W 5 (H0)21H1 5 1P21(S 2 Qs) P21R
s 0 2

Then the characteristic polynomial of W turns out to be, just as predicted,
of the form l2(l4 1 c3l3 1 c2l2 1 c1l 1 c0) 5 0. The eigenvectors
corresponding to each ls can be taken to be

es 5 1a
b2

where

l1 5 0: a1 5 0, b1 5 1
1
y2

y3
2

with 1y2

y3
2 5

21
r22r33 2 r23r32

1 r33 2r23

2r32 r22 2 r21

r31
2
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l2 5 0: a2 5 1
1
0
02, b2 5 1

0
z2

z3
2

with 1 z2

z3
2 5

21
r22r33 2 r23r32

1 r33 2r23

2r32 r22 21s21

s31
2

and for ls Þ 0 (s 5 3, 4, 5, 6)

as 5 1
0

ls(r22 2 lsg23)
ls(r23 1 ls(2ls 1 g22))

2,

bs 5
1
ls

sas 5 1
0

2(r23 1 ls(2ls 1 g22))
(r22 2 lsg23)

2
where lij [ [P21(S 2 Qs)]ij and rij [ [P21 R]ij.

Clearly these eigenvectors form a linearly independent set. By differenti-
ating l4 1 c3l3 1 c2l2 1 c1l 1 c0 5 0, we get

lp

Us
5 2

(lp)3 c3/Us 1 (lp)2 c2/Us 1 lp c1/Us 1 c0/Us

4(lp)3 1 3c3(lp)2 1 2c2lp 1 c1

Substituting this into the CE condition (5.5) (s (lp /Us)ep,s 5 0 gives a
polynomial of order 6 in l, but by using l4 1 c3l3 1 c2l2 1 c1l 1 c0 5
0 repeatedly, one can reduce this to a polynomial of order 3, whose coefficients
must be set equal to zero simultaneously.

Doing so, we find that the only nontrivial covariant condition we can
impose such that these coefficients vanish simultaneously is

L8L- 2 3(L9)2 5 0 (B.1)

APPENDIX C

Here, for completeness, we present (7.19) and (7.20) in terms of L and
its derivatives only. They become (K [ LaaLbb 2 L2

ab)

3–2 LaLabb(La(16L3
aaLab 1 8LaaL3

ab 1 L3
abLbb)

2 K [8aL2
aaLab 1 b(8LaaL2

ab 1 4L2
aaLbb 1 L2

abLbb)])
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1 1–2 LaLaaa(LaLab(16LaaL2
ab 1 8L2

abLbb 1 L3
bb)

2 K [8aL3
ab 1 bLbb(12L2

ab 1 L2
bb)])

2 3–2 LaLabLaab(LaLab(16L2
aa 1 4L2

ab 1 4LaaLbb 1 L2
bb)

2 K [8aLaaLab 1 b(4L2
ab 1 8LaaLbb 1 L2

bb)])

2 1–2 LaLbbb(La(16L4
aa 1 12L2

aaL2
ab 1 L4

ab 2 4L3
aaLbb)

2 K [8aL3
aa 1 bLab(12L2

aa 1 L2
ab)])

2 3–2 (4Laa 1 Lbb)K 2[LaLab 2 bK ] 5 0 (D.1)

and

23–2 LaLaab((4Laa 1 Lbb)(2L2
aL2

ab 2 aLaL2
abLbb)

1 bLaLab(16LaaL2
ab 1 6L2

abLbb 2 2LaaL2
bb)

2 bK [2aLabL2
bb 1 2b(4LaaL2

ab 1 2L2
abLbb 1 LaaL2

bb)])

1 3–2 LaLabb((4L2
aa 1 L2

ab)(2L2
aLab 2 aLaLabLbb)

2 bKLab[2aLabLbb 1 2b(4L2
aa 1 L2

ab 1 2LaaLbb)]

1 2bLa(8L2
aaL2

ab 1 2L4
ab 1 LaaLbbL2

ab 2 L2
aaL2

bb))

1 1–2 LaLaaa((4L2
ab 1 L2

bb)(2L2
aLab 2 aLaLabLbb)

1 bLa(16L4
ab 1 6L2

abL2
bb 2 2LaaL3

bb)

2 bK(8bL3
ab 1 6bLabL2

bb 2 aL3
bb))

2 1–2 LaLbbb(2L2
aLaa(4L2

aa 1 2L2
ab 2 LaaLbb)

1 2bLaLaaLbb(8L2
aa 1 5L2

ab 2 3LaaLbb)

2 bK(8bL3
aa 1 6bLaaL2

ab 2 aL3
ab) 2 aLa(L4

ab 1 4L3
aaLbb))

2 3–2 K 2(4La 1 4bLab 2 aLbb)(LaLab 2 bK ) 5 0 (D.2)

respectively.
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